пятница, 30 ноября 2012 г.

Теоретические основы планирования одного тренировочного занятия, тренировочных микро-, мезо- и макроциклов


Исходным пунктом для составления тренировочного плана является ожидаемый тренировочный эффект (ТЭ). В нашем случае — улучшение показателей локальной выносливости спортсменов в ЦВС. Улучшения локальной выносливости (также как и других компонентов физической подготовленности) можно добиться, решив три задачи:
1) целесообразно подобрав средства и методы воздействия на генетический аппарат соответствующих морфоструктур организма (т.е. стимулировав синтез определенного вида и-РНК);
2) обеспечив оптимальные условия для протекания процессов синтеза органелл клеток, подвергшихся тренировочному, воздействию за время восстановления;
3) обеспечив оптимальные последовательность и уровень развития мышечных компонентов, определяющих локальную выносливость применительно к выбранной соревновательной дистанции.
Первая задача решается путем планирования тренировочного занятия, вторая — организацией отдыха и планированием микро и мезоциклов, третья - макроциклов.



ТЕОРЕТИЧЕСКИЕ ОСНОВАНИЯ ДЛЯ ПЛАНИРОВАНИЯ ОДНОГО ТРЕНИРОВОЧНОГО ЗАНЯТИЯ

Как определено ранее, основными морфоструктурами, которые должны подвергаться воздействию с целью развития локальной выносливости, являются:

- структурные и сократительные элементы мышц;
- капилляры и митохондриальный аппарат;
- ферментативные комплексы КФК-реакции и гликолиза.

По каким правилам должно строиться тренировочное занятие (далее, для краткости – тренировка) для обеспечения высокого тренировочного эффекта, направленного на синтез указанных органелл мышечных клеток и капилляров мышц?
В наиболее общем виде основным правилом является: обеспечение максимальных стимулов для синтеза и-РНК соответствующего типа при минимальном повреждении структурных и сократительных элементов и исчерпании углеводных запасов мышц, а именно создание оптимальных условий для развертывания анаболических (ассимиляционных) процессов при минимизации катаболического эффекта.
Ускоренный синтез и-РНК обеспечивается адекватными стимулами, воздействующими на генетический аппарат. Можно ожидать, что количество молекул и-РНК будет пропорционально длительности действия стимула. В нашем случае - длительности выполнения упражнений определенной направленности. Ограничителями длительности тренировки являются, повреждения элементов мышц за счет действия механических [Friden J. и др., 1983, Armstrong, 1991; Еston R.G. и др., 1994; или химических [Пшенникова М.Г. 1986; Мoreau D. и др.. 1995] факторов; исчерпание запасов гликогена в мышцах [Westerblad Н. и др., 1991; Kiens В. и др., 1993); «центральное» утомление, связанное с ЦНС, ССС или нейроэндокринной системой и др. По мере продолжения тренировки степень проявления «повреждающих» факторов увеличивается, достигая максимума в конце занятия в связи с повреждением клеточных мембран со стороны свободных радикалов [Пшенникова М.Г., 1986], деградации адениннуклеотидов, снижением запасов гликогена, «накоплением» повреждений в структурных и сократительных белках, утомлением нервной системы и ухудшением координации и др.
Существуют представления, что, для того чтобы получить высокий анаболический эффект (т.е. сильно стимулировать синтез и-РНК и белков), необходимо довести спортсмена до высокой степени утомления. В общем случае это верно, так как утомление часто связано с разрушение клеточных структур, что сильно интенсифицирует синтетические процессы. Особенно выраженный эффект (пролиферация и гипертрофия ядер МВ, содержание, в них ДНК) удается получить, например, при высокоинтенсивной электростимуляционной тренировке [Cabric M. И др., 1988], приводящей к интенсивным послетренировочным мышечным болям. Однако разрушение – не единственный стимул синтетических процессов, которые в этом случае носят компенсаторный характер. Вторым и наиболее важным для спортивной тренировки стимулом является создание таких условий в мышечных клетках, которые ускоряли бы приспособительные (адаптационные) синтетические процессы, лежащие в основе развития физических способностей. Причем создание таких условий совершенно необязательно должно сопровождаться выраженным повреждением морфоструктур мышц.
Таким образом, при выборе средств и методов тренировки очень важно четко представлять, какие из упражнений несут в себе высокий катаболический потенциал (они будут стимулировать синтез, но компенсаторный), а какие не только разрушают, но и способствуют развитию мышц, то есть реализуют цель физической тренировки.
Этот вопрос для теории и методики спортивной тренировки является наиважнейшим, и в тоже время он практически не разработан.
В настоящее время есть основания предполагать, что наиболее высоким катаболическим эффектом, при минимальном анаболическом, будут обладать скоростно-силовые упражнения, в которых в явном виде присутствует уступающий режим работы мышц, т.е. когда мышцы насильно растягиваются с высокой скоростью. «Классический» пример — спрыгивания «в глубину» и бег под гору, а также прыжки и быстрые приседания со штангой или другими отягощениями, резкие маховые движения при «развитии гибкости», любые прыжковые и спринтерские упражнения или даже просто беговые нагрузки в большом объеме, если проводятся спортсменами, у которых специальной предварительной тренировкой ОДА не подготовлен к такому характеру работы. Повреждение мышц легко диагностируется по появлению послетренировочных мышечных болей и снижению силы этих мышц.
Второй вид таких упражнений — это те, при которых достигается глубокое локальное и «глобальное» «закисление» организма, сопровождающееся значительным понижением и долгим удерживанием низких значений рН крови. При такой тренировке в максимальной степени активизируется симпатоадреналовая и глюкокортикоидные системы, что сопровождается выбросом «стресс-гормонов», максимально мобилизующих  не только энергетические, но и пластические ресурсы организма, а также воздействуют на иммунную систему. Кроме того, высокая концентрация ионов водорода в мышцах и медленная их элиминация из-за низкого градиента между саркоплазмой и кровью является одним из основных «химических» факторов повреждения органелл и мембран клеток.
Применение таких упражнений, предположительно, будет отвлекать часть пластических ресурсов для «компенсаторного», а не «развивающего» синтеза белков, так как пластический и гормональный пул организма ограничен (Виру А.А., Кырге ПК., 1983].
Сказанное не означает, что мы расцениваем такие упражнения как безусловно вредные. Их применение в нужное время и в нужном месте может быть необходимо.  Однако всегда надо помнить об их особенностях, и соответственно строить тренировку, например, в те периоды, когда необходимо добиться максимального «анаболического» эффекта - быстрого прироста тренируемой способности.
Об упражнениях, которые обладают, на наш взгляд, максимальным «анаболическим» потенциалом, уже говорилось выше.
Таким образом, первым принципом построения тренировочного занятия, основной целью которого является улучшение компонентов ЛВ мышц, можно считать «принцип учета анаболического/катаболического потенциала упражнения».
В связи с тем, что скорость накопления повреждений увеличивается к концу занятия, а это увеличивает время и стоимость восстановления, то вторым принципом будет «принцип укороченных, более частых занятий», который предполагает, что две коротких тренировки дадут больший прирост способности, чем одна длинная такого же объема. В то же время «укороченные» тренировки предполагают экономию времени и ресурсов организма только за счет низкоэффективных средств подготовки, но не за счет эффективных средств, под которыми мы понимаем такие, которые с предельной интенсивностью воздействуют на развиваемую способность. Такие средства улучшения основных компонентов ЛВ выносливости описаны выше.
В то же время для недопущения ошибок в построении реального тренировочного процесса еще раз необходимо подчеркнуть, что данные принципы относятся к построению занятий «в интересах» развития ЛВ. Однако существуют задачи развития других компонентов выносливости, например, накопление гликогена в мышцах, повышение устойчивости деятельности нейроэндокринной системы, системы терморегуляции и т.п., которые могут требовать для своего решения использования других принципов построения занятия.
 Как уже отмечалось, ЛВ зависит от степени развития в основном трех мышечных компонентов
--- сократительных элементов мышц,
--- митохондриального аппарата и системы микроциркуляции;
---ферментативных комплексов, обеспечивающих высокое содержание субстратов, высокую емкость и скорость КФК и гликолитической реакции.
Для обеспечения прироста функциональных возможностей указанных структур требуются в большинстве случаев совершенно различные внутриклеточные условия и характер сокращения мышц. Для гипертрофии волокон — анаэробные условия; для митохондриального аппарата --- аэробные: для ферментативных комплексов, определяющих алактатные и гликолитические характеристики мышц, предположительно — высокая скорость и степень исчерпания субстратов и т. п. В процессе выполнения какого-то упражнения в ядрах МВ происходя совершенно конкретные изменения, ускоряется синтез строго определенных молекул и-РНК. и т.д. В реализации этих изменений участвуют специфические энергетические, пластические и гормональные процессы. Таким образом, существует очень мало доводов в пользу так называемых «комплексных занятий, когда в одной тренировке ставится задача развитие сразу нескольких способностей, связанных с ускорением синтетических процессов различных морфоструктур внутри мышц. Поэтому целесообразно считать третьим принципом построения тренировочного занятия — «принцип однонаправленного воздействия» [Верхошанский Ю.В.,1985],в основе которого лежит предположение, что серия разного вида (например, «на силу» и «на выносливость» однонаправленных занятий будет более эффективной в отношении развиваемых способностей, чем  серия комплексных занятий. Этот принцип не отменяет имеющиеся рекомендации [Платонов В.Н., 1984] использовать в одном занятии весь спектр эффективных средств и методов для развития, например, аэробных способностей. Или совмещения, например, технической подготовки с любым из средств улучшения локальной выносливости и т.п. В то же время он отражает современные тенденции в организации подготовки высококвалифицированных спортсменов [Верхошанский Ю.В., 1985; Платонов В И., 1984].
Но в реальном тренировочном процессе часто становится невозможным использование только однонаправленных занятий, поэтому возникает проблема оптимального комплексирования упражнений различной направленности в одном занятии.
Наиболее часто используемые виды тренировки — это «на силу» и «выносливость», и от их рационального сочетания в большинстве случаев зависит эффективность тренировки.
 

Увеличение мышечной силы подразумевает:
1) улучшение «нервного» компонента силовых способностей
2) гипертрофию мышечных волокон.
Вероятно, особого значения не имеет, в какой части тренировки применять упражнения, улучшающие «нервный» компонент силы (это упражнения с околопредельными весами и с максимальной мощностью — «взрывные» упражнения), так как ЛВ в большей мере зависит от внутримышечных факторов. Хотя считается, что выполнение таких упражнений в начале занятия, когда спортсмен «свежий», дает лучший эффект. Объем таких упражнений зависит от механической прочности мышц и при передозировке они начнут болеть. Поэтому лучше за один раз применять меньший объем таких упражнений. Более рациональный вариант — понемногу, но чаще, например, на каждой тренировке
В то же время планирование тренировки с целью гипертрофии мышечных волокон и одновременного повышения содержания «аэробных» энзимов — существенный вопрос.
Для того чтобы синтез сократительных белков мышц (гипертрофия мышц) происходил успешно, нужно (кроме самого тренировочного воздействия) обеспечить наличие достаточных запасов углеводов в мышцах (как источника энергии), в крови должно быть достаточное количество аминокислот – строительного материала для мышц и (наиболее существенно) повышенное содержание в крови так называемых анаболических гормонов (например, тестостерона и соматотропина) [Теппермен Дж., Теппермен X., 1989; Galbo Н., 1981].
Ускоренный синтез же аэробных ферментов обеспечивается другими условиями. Основными характеристиками которых является высокая энергетическая стоимость и выброс другой группы гормонов (называемых стресс-гормонами), главные среди которых глюкокортикоиды [Теппермен Дж., Теппермен X., 19891. «Анаболическая» функция глюкокортикоидов — ускорение синтеза митохондриальных компонентов. Однако во время занятия эти гормоны выполняют мобилизацию (т.е. расщепление) белковых ресурсов организма. Проще говоря, они вызывают расщепление мышечных белков (а задача - их накапливать) и белков лимфатической системы, которые выполняют иммунные (защитные) функции в нашем организме. Именно поэтому при перетренировке увеличивается частота заболеваний [Fitzgerald L.., 1988], а слишком «объемная» аэробная тренировка приводит к уменьшению толщины мышечных волокон, потере миоглобина [Теrrados N. и др., 1986] Кроме того, высокая энергетическая стоимость такой тренировки приводит к утилизации (сжиганию) не только углеводов, но и гормонов, аминокислот, т.е. тех веществ, которые нужны для «строительства» мышц.
Силовая тренировка может «вредить» выносливости еще и потому, что при тренировке, направленной на гипертрофию мышц, в мышце накапливаются в высокой концентрации и удерживаются длительное время ионы водорода, «закисляющие» внутреннюю среду мышечных клеток, что ускоряет разрушение митохондриальных компонентов, поэтому аэробная выносливость мышц может ухудшаться [Luthi J.M., и др., 1986; Масdougal J.D., и др., 1979].


Какое сочетание рациональнее - сначала тренировка силы, а потом выносливости, или наоборот?
Нам известно только одно исследование, в котором этот вопрос изучался в контролируемых условиях [Jackson С. и др., 1990]. Показано, что если сначала применять силовую, а затем аэробную нагрузку, то объем МБ уменьшается, если наоборот -увеличивается
Эти данные подтверждаются и объясняются результатами имитационного компьютерного моделирования, выполненного в ПНИЛ РГАФК.
Суть полученных результатов следующая: Как отмечалось, нагрузки на выносливость приводят к расщеплению белков до аминокислот и их использованию в качестве топлива. То же происходит и с гормонами. Таким образом, если сначала выполнить силовую тренировку, то в самих мышцах повышается концентрация метаболитов, а в крови -концентрация аминокислот и гормонов, необходимых для начальной стадии синтеза белков. Если после нее следует аэробная, то происходит элиминация этих веществ и, таким образом, эффективность силовой тренировки будет очень низкой.
Если же сначала выполнить аэробную нагрузку, а потом силовую, то выделившиеся полезные для ускоренного синтеза белка вещества будут в восстановительный период беспрепятственно выполнять свою функцию ускорения синтеза белков.
Кроме этого, есть предположение, что создаваемый в результате силовой тренировки «анаболический фон» в организме, будет положительно влиять и на синтез аэробных ферментов, особенно если между аэробной и силовой тренировкой сделать 15-20-минутный перерыв и выпить сладкий напиток.


Рис. 1. Схема планирования одного тренировочного занятия: наиболее эффективно однонаправленное занятие; в случае комбинирования — сначала выполняется аэробная нагрузка, затем – силовая



Таблица 1. Рациональные  варианты построения тренировочных занятий



Если стоит задача сочетания скоростно-силовой и силовой нагрузки, то оптимальным будет такое же сочетание — сначала интенсивные нагрузки, пока не ухудшена координация, пока ЦНС способна к обеспечению спринтерских и скоростно-силовых упражнений, пока не созданы предпосылки для микротравмирования мышц во время силовых упражнений. Также можно предположить, что интенсивные средства, примененные в начале, будут иметь стимулирующий эффект в отношении повышения эффективности «анаболической» силовой тренировки.
На тех же основаниях можно предположить, что при сочетании скоростно-силовой и аэробной тренировки первая должна выполняться в начале.
При трехкомпонентном занятии рациональным будет сочетание: спринт + скоростно-силовые упражнения, далее -аэробная нагрузка, затем — силовая.
Но эффективность таких занятий очень сомнительна и их применение целесообразно только в тренировке юношей в переходный период в «разгрузочных» микроциклах для поддержания способностей.
В обобщенном виде материалы этого раздела представлены в табл. 1 и на рис. 1.
В приведенных выше рассуждениях не затрагивалась проблема технической подготовки.

четверг, 29 ноября 2012 г.

»Наша цель - баланс между возможностями сердца и мышцами«


Заведующий лабораторией фундаментальных проблем теории физической и технической подготовки спортсменов высшей квалификации Российской государственной академии физической культуры; профессор кафедры естественнонаучных дисциплин и информационных технологий РГАФК.

«Эмпирический путь развития теории спортивной тренировки исчерпал себя еще 20-30 лет назад. Попытки преодоления эмпиризма были неудачными по причине отсутствия алгоритма построения теоретического знания в науковедческой литературе. С начала 90-х годов появился четкий алгоритм построения развитого теоретического знания, который позволил в основном построить теорию физической подготовки спортсменов с использованием математического моделирования»

Спортивная тренировка это комплексный процесс, требующий учета всех сторон подготовки.
Наша цель - баланс между возможностями сердца и мышцами.



У спортсменов высокой квалификации, как правило, наблюдается баланс между производительностью сердца и возможностями мышц по потреблению кислорода.

 Новичкам необходимо.

1.Нарастить мышцы, чтобы был запас. Эта дополнительная мышечная масса должна до конца исчерпывать кислород в крови, и при этом не очень сильно закисляться.

2.Размеры сердца при правильной тренировке можно увеличить, ударный объем сердца можно повысить почти в два раза.

Баланс достигнут, что дальше? Если достигнут баланс, то начинать надо с сердца. Потому что без увеличения размеров левого желудочка сердца ничего не получится. Нужно искать резервы в том, чтобы расширить сердце еще дальше.

Скелетные мышцы всегда можно увеличить, у любого человека можно мышцы нарастить. Посмотрите на штангистов - нет проблем. Как увеличить производительность сердца, как его растянуть?

Давайте будем рассуждать так: надо увеличить ударный объём сердца, скажем, на 20%. Сколько нужно для этого тренироваться? По некоторым нашим данным получается: Если нужно увеличить на 20%, то надо тренироваться хотя бы 3-4 раза в неделю по 2 часа (на пульсе 120-130 уд/мин, при котором достигается максимальный ударный объем). · Если нужно 50-60% прибавить, тогда надо тренироваться 2 раза в день по 2 часа, хотя бы 3-4 дня в неделю. · Чтобы 100% гипертрофию получить, то есть сделать сердце в 2 раза больше, то уже необходимы очень большие объёмы. Это каждый день по 4, по 5 часов. · А если нужно супер атлета сделать, то тогда надо тренироваться по 5-8 часов каждый день. Такие тренировки нужно продолжать в течение примерно 4-5 месяцев. После этого у человека будет просто растянутое сердце. Причем, поддерживаться это состояние будет достаточно легко, а вот чтобы сердце на всю жизнь таким осталось, этого не произойдет. Если перестать тренироваться, то сердце будет постепенно уменьшаться. У бывших олимпийских чемпионов за 10 лет сердце уменьшается в объеме на 60-80%, хотя масса сердца почти не изменяется.


Пределы человеческих возможностей.
Существуют наследуемые пределы. Один из них - это количество клеток в сердце, которое наследуется. Одному дано заведомо маленькое сердце, а другому заведомо большое. Можно, конечно, и маленькое сердце очень сильно растянуть, но если у другого большое сердце, то его в растягивании левого желудочка догнать трудно. И тут уже возникает проблема отбора.

С точки зрения мышц тоже существует наследуемый фактор. Во-первых, это число мышечных волокон. Рост мышц идет за счет внутренних структур МВ, а не за счет увеличения их числа. (Гиперплазия, то есть увеличение числа мышечных клеток - это очень редкое явление, не превышающее 5%, и то у представителей силовых видов спорта). Во-вторых, это биохимические характеристики мышечных волокон. Уже всеми доказано, что существует наследование АТФ-азной активности мышц и скорости сокращения. Есть гипотеза, что фермент анаэробного гликолиза, превращающего пируват в лактат, называемый ЛДГ-мышечного типа, тоже наследуется. То есть наследуется способность мышц становиться гликолитическими. А чтобы превратить мышечные волокна в окислительные, надо просто тренироваться. При этом синтезируется другой фермент - ЛДГ-сердечного типа. ЛДГ-мышечного типа и ЛДГ-сердечного типа не просто должны быть в равенстве, ЛДГ-сердечного типа должно быть намного больше. Но у одного переделка МВ получается быстро и легко, потому что ему по наследству досталось мало ферментов гликолитического характера. А другому человеку их досталось огромное количество, и превратить его в аэробного человека очень тяжело. Например, одаренный человек может достичь предельного насыщения мышц митохондиями (состояния пика спортивной формы) примерно за 100-дневный срок. А неодаренному потребуется гораздо больше времени. Когда у тебя всего 20% окислительных МВ, то остальные 80% превратить в окислительные, да еще бороться против природы человека - очень тяжело.


Планирование физической подготовки юношей - девушек.
Спортсмены 14-15 лет находятся в стадии пубертатного или постпубертатного физического развития. В этот момент происходит интенсивный рост частей тела, гипертрофия мышц из-за высокой концентрации гормонов в крови. Развитие сердечно-сосудистой системы и, прежде всего, миокарда отстает от развития опорно-двигательного аппарата. Эта особенность онтогенеза накладывает свой отпечаток на планирование нагрузок юношеского возраста. Из тренировочного процесса следует полностью исключить нагрузки, вызывающие увеличение ЧСС более170-190 уд/мин длительностью более 30с. Применение такого рода средств даже один раз в неделю будет приводить через 1-2 месяца регулярных занятий к дистрофическим явлениям в миокарде, снижению аэробных возможностей. Поэтому разумно было бы минимизировать объем "жестких" средств, специальной физической подготовки и включить в нее строго регламентированные упражнения, выполнение которых гарантирует как рост аэробных возможностей ГМВ, так и исключение из тренировочного процесса неадекватных гликолитических нагрузок.

Силовая подготовка.
Вопрос об интервале отдыха между днями силовой тренировки связан со скоростью реализации и-РНК в органеллы клетки, в частности, в миофибриллы. Известно, что сама и-РНК распадается в первые десятки минут после упражнения, однако структуры, образованные на их основе, синтезируются в органеллы в течение 4 -7 дней (очевидно зависит от объема образованной за тренировку и-РНК). В подтверждение можно напомнить данные о ходе структурных преобразований в мышечных волокнах и согласующихся с ними субъективных ощущениях после работы мышцы в эксцентрическом режиме, первые 3-4 дня наблюдаются нарушения в структуре миофибрилл (около Z-пластинок) и сильные болевые ощущения в мышце, затем МВ нормализуется и боли проходят. Можно привести также данные собственных исследований, в которых было показано, что после силовой тренировки концентрация мочевины в крови утром натощак в течение 3-4 дней находится ниже обычного уровня, что свидетельствует о преобладании процессов синтеза над деградацией. Из описания механизма синтеза миофибрилл должно быть ясно, что ММВ и БМВ должны тренироваться в ходе выполнения разных упражнений, разными методиками.

Гиперплазия миофибрилл в быстрых мышечных волокнах.
 Для активации БМВ необходимо выполнять упражнения с максимальной или околомаксимальной интенсивностью. В этом случае согласно "правилу размера" Ханнемана, будут функционировать ММВ и БМВ. Если сокращение мышц будет сочетаться с расслаблением, с таким их функционорованием, которое не вызывает остановки кровообращения, то воздействие упражнения будет направлено в основном на БМВ. Для достижения максимального эффекта тренировки необходимо соблюсти ряд условий:





---упражнение выполняется с максимальной или околомаксимальной интенсивностью

---упражнение выполняется "до отказа", то есть до исчерпания запасов КрФ, образования высокой концентрации Кр

--- интервал отдыха 5 или 10 мин 5 мин - активный отдых, выполняются упражнения с мощностью АэП (ЧСС 100-120 уд/мин), это значительно ускоряет процесс "переработки" молочной кислоты 10 мин - относительно малоактивный отдых , ресинтез КрФ идет преимущественно в ходе анаэробного гликолиза с накоплением в БМВ ионов Н и La

 ---количество повторений за тренировку: 5-7 с пассивным отдыхом, 10 - 15 с активным отдыхом

 ---количество тренировок в день: одна, две и более, в зависимости от тренированности

---количество тренировок в неделю - после предельной по продолжительности (объему) тренировки следующая может повториться только через 7-10 дней, именно столько времени требуется для синтеза миофибрилл в мышечных волокнах.


Гиперплазия миофибрилл в медленных мышечных волокнах.
Методика гиперплазии миофибрилл в ММВ похожа на ранее описанную методику для БМВ. Основным отличительным условием является требование выполнять упражнение без расслабления тренируемых мышц. В этом случае напряженные и утолщенные МВ пережимают капилляры, вызывают окклюзию (остановку кровообращения). Нарушение кровообращения ведет к гипоксии МВ, т.е. интенсифицируется анаэробный гликолиз в ММВ, в них накапливается лактат и Н. Очевидно, что создать такие условия можно при работе против силы тяжести или тяги резинового амортизатора.



Приведем пример такого упражнения. Выполняются приседания со штангой 30 - 70% ПМ. Спортсмен из максимально глубокого приседа встает до угла в коленных суставах 90 -110 град.:



---интенсивность 30 - 70%

---продолжительность упражнения 30 - 60 с (отказ из-за болей в мышце)

---интервал отдыха между подходами к снаряду 5 - 10 мин (отдых должен быть активным)

---число подходов к снаряду 7 -12

---количество тренировок в день: одна, две и более

---количество тренировок в неделю: упражнение повторяется через 3-5 дней.

Правила могут быть обоснованы следующим образом.
Интенсивность упражнения выбирается такой, чтобы были рекрутированы только ММВ. Продолжительность упражнения не должна превышать 60 с, иначе накопление Н может превысить оптимальную концентрацию для активации синтеза белка. Для увеличения времени пребывания в ММВ Кр и Н следует выполнять упражнение в виде серии подходов, а именно первый подход не до отказа (секунд 30), затем интервал отдыха 30 с. Так повторяется три или пять раз, затем выполняется длительный отдых или упражняется другая мышца. Преимущество такого упражнения (в культуризме его называют "суперсерией") заключается в том, что Кр и Н присутствуют в ММВ как в ходе упражнения, так и в паузах отдыха. Следовательно, суммарное время действия факторов (Кр,Н), вызывающих образование и-РНК, значительно увеличивается в сравнении с ранее описанными вариантами тренировки.

Следует сделать одно важное замечание. Тренировки, направленные на увеличение синтеза белка, необходимо проводить в конце тренировочного занятия аэробной направленности и желательно на последней вечерней тренировке. Дело в том, что в ответ на силовую тренировку образуются белковые молекулы, накапливаются гормоны в тканях. Если же после силовой тренировки будет выполнена длительная и с высоким потреблением кислорода тренировка, то при исчерпании запасов гликогена будут интенсивно метаболизироваться белки, что в конечном итоге приведет к снижению эффективности тренировки.



1.Упражнение выполняется с интенсивностью 70-90%МПС, количество повторений 6-12 в одном подходе. Длительность выполнения упражнения составляет 30-70 с. В этом варианте повторяется правило, изложенные выше для случая увеличения количества миофибрилл в БМВ и означает, что эффективно то упражнение, которое выполняется до отказа, вызывающее предельное расщепление КрФ и стрессовое состояние. Для увеличения этого эффекта следует придерживаться принципа вынужденных движений. Наибольший эффект достигается при выполнении последних 2-3 повторений, которые могут выполняться даже с помощью партнеров. Этот принцип лишь уточняет принцип качества усилия, т.е. необходимо добиваться максимального расщепления КрФ, чтобы свободный Кр и Н стимулировали синтез РНК, а предельное психическое напряжение вызывало выход в кровь гормонов из гипофиза, а затем из других желез эндокринной системы.



2. Упражнение выполняется с интенсивностью 30-70%МПС, количество повторений 15-25 в одном подходе. Длительность выполнения упражнения составляет 50-70 с. В этом варианте каждое упражнение выполняется в статодинамическом режиме, т.е. без полного расслабления мышц по ходу выполнения упражнения. Напряженные мышцы не пропускают через себя кровь и это приводит к гипоксии, нехватке кислорода, разворачиванию анаэробного гликолиза в активных мышечных волокнах. В данном случае это медленные мышечные волокна. После первого подхода к снаряду возникает лишь легкое локальное утомление. Поэтому через короткий интервал отдыха (20-60 с) следует повторить упражнение. После второго подхода появляется чувство жжения и боли в мышце. После третьего подхода эти ощущения становятся очень сильными - стрессовыми. Это приводит к выходу большого количества гормонов в кровь, значительному накоплению в медленных мышечных волокнах свободного Кр и ионов Н.


Принцип интуиции. Каждый спортсмен должен опираться в тренировке не только на правила, но и на интуицию, поскольку имеются индивидуальные особенности адаптационных реакций. Спортсмен должен регулярно поднимать предельные веса, для оценки состояния, уровня тренированности. Эти показатели являются главным критерием эффективности тренировочного процесса.

Принцип непрерывности. Увеличение продолжительности интервала отдыха или снижение количества тренировочных занятий в единицу времени приводит к снижению эффективности тренировочного процесса. Это относится ко всем физиологическим системам.



Принцип цикличности. Тренировочный процесс должен строиться с учетом одновременного развития всех основных систем организма, при некотором преобладании в развитии какой-либо избранной системы, необходимой для данного вида спорта. Например, для скоростно-силовых видов спорта следует стремится к опережающему развитию миофибрилл в мышцах, а для выностливостных видов спорта - митохондрий мышц. В оздоровительной физической культуре ставится задача удержания повышенной гиперплазии миофибрилл и митохондрий, при максимальной гипертрофии и гиперплазии клеток желез эндокринной и иммунной систем. Поэтому необходимо планировать последовательность применения различных тренировочных средств в рамках определенного цикла (микроцикла). Этот цикл должен характеризоваться синергичным взаимодействием процессов восстановления после тренировок различной направленности. Он должен приводить к положительным и заданным сдвигам в системах и органах человека.



Принцип экономии гормонов. Адаптационные перестройки, связанные с усилением процесса синтеза белка в клетках, зависят от концентрации гормонов в крови и тканях. Следовательно, надо учитывать два явления: больше гормонов выделяется в состоянии предельного напряжения - стресса, а именно, при максимальной интенсивности или болевых ощущениях, связанных с локальным или общим закислением выполнение упражнений с высоким потреблением кислорода, при недостатке глюкозы в крови, повышении концентрации ионов водорода субстратом для метаболизма становятся белки, в том числе, гормоны. Следовательно, после тренировки, стимулирующей выделение большого количества гормонов, нельзя продолжительно тренироваться с интенсивностью вызывающей максимальный метаболизм в организме, т.е. на уровне АнП и выше.

Стретчинг в тренировке спортсмена.
В подготовке спортсмена имеет важное значение подвижность в суставах, иначе говоря, гибкость. Гибкость определяют как физическое качество человека характеризующее подвижность в суставах. Атлеты с высокой подвижностью в суставах легче выполняют технические действия и, как показала практика применения упражнений на гибкость, существенно меньше получают травмы. В связи с этим на западе стали широко применять во многих видах спорта и, упражнения на растяжения мышц, которые получили название - стретчинг. В переводе с английского это слово означает растяжение.

Степень растяжения тканей, ограничивающих подвижность в суставе зависит от:
силы тяги мышц, сгибающих сустав, от степени расслабления мышц антагонистов, длины миофибрилл волокон мышц антагонистоы, длины волокон тинтина, длины связок, суставных костных ограничений, Эти факторы, как правило, ограничивают подвижность в связи с указанной последовательностью. Наибольшие проблемы возникают у бегунов при развитии подвижности в тазобедренных и голеностопных суставах. Поэтому для оценки гибкости человека используют тест - наклон вперед с прямыми ногами. По глубине наклона оценивают гибкость человека. Однако, подвижность в других суставах может существенно отличаться от той, которую принято оценивать в общепринятом тесте.

Физиологические механизмы растяжения (стретчинга)
Растяжение мышцы вызывает возбуждение проприорецепторов: мышечных веретен и сухожильных органов. При возбуждении этих рецепторов электрические импульсы поступают в спинной мозг и усиливают активность мотонейронов спинного мозга той мышцы, которую растягивают. Этот безусловный рефлекс назывется рефлексом на растяжение. Чем сильнее мышцу растягивают тем больше она возбуждается, увеличивает силу тяги. С большой долей вероятности можно утверждать, что этот рефлекс был закреплен в ходе естественного отбора. При отсутствии такого физиологического механизма человек не мог бы быстро взаимодействовать с опорой при спрыгивании в глубину.

Возбуждение мышц синергистов приводит к торможению моторных нейронов мышц антагонистов (реципрокное торможение).

Таким образом, если растягивать мышцу быстро, то эта мышца будет сопротивляться согласно рефлексу на растяжение, а через 50-100 мс будет расслабляться из-за реципрокного торможения, так как мышцы антагонисты сокращаются для растяжения мышц синергистов. Следовательно, если растягивать мышцы синергисты короткими по продолжительности и амплитуде рывками, то можно добиться максимально возможного растяжения мышцы. В предельно растянутой мышце нарушается кровообращение, возникает гипоксия, разворачивается анаэробный гликолиз - мышца закисляется. Если этот процесс длится достаточно долго 10-30 с, то после прекращения растяжения мышцы ионы водорода выходят из нее, взаимодействуют с буферными основаниями крови, что приводит к выделению углекислого газа. СО2 действует на хеморецепторы сосудов и вызывает расслабление мышечных волокон артериол. В расширенные сосуды устремляется кровь - мышца разогревается. Этот эффект можно существенно усилить, если после предельного растяжения мышцы и фиксации этого состояния активизировать - "сократить" ее. В этом случае кровоснабжению будет нарушено более значительно, вплоть до полной  остановки. При предельном растяжении мышцы, когда дальнейшее удлинение ограничивают отдельные самые короткие миофбриллы активных мышечных волокон растягиваемой мышцы, возникают болевые ощущения. Если боль преодолеть, то короткие миофибриллы можно разорвать, а значит увеличить гибкость.

Замечание. Если длительное время выполнять упражнения с ограниченной амплитудой, то в мышечных волокнах вновь образуются относительно короткие миофибриллы. Поэтому необходимо регулярно выполнять упражнения на гибкость с максимально возможной амплитудой движения в суставах.

По мере увеличения гибкости предел растяжения может быть связан с титином - колагеновыми нитями спиралевидной формы, идущими вдоль миофибрилл. Разрушение их также может привести к увеличению гибкости. Растяжение связок и суставных сумок нельзя признать положительным явлением.

Растяжение мышц усиливает процесс синтеза в них, поэтому в последнее время ведутся исследования эксцентрических упражнений. Можно предположить, что растяжение мышц увеличивает поры в мембранах, а через них начинают быстрее проходить гормоны и другие вещества необходимые для синтеза органелл в мышечных волокнах. Есть мнение, что обломки разорванных компонентов мышечного волокна стимулируют синтез в нем. Таким образом, корректное использование физиологических механизмов может обеспечить: эффект разминки, привести все миофибриллы к одной длине, а значит увеличить прочность мышц на растяжение, активизировать процесс синтеза в мышечных волокнах.


Методика стретчинга.
Стретчинг может использоваться как элемент разминки, упражнение развивающее гибкость, для усиления эффекта силовой тренировки.

Стретчинг в разминке. Цель разминки - увеличить температуру и кислотность тканей до уровня оптимального для активности работы ферментов, а также для повышения тонуса мелких мышц, отвечающих за фиксацию суставов.

Для повышения температуры тела в разминку следует включать упражнения построенные по принципу круговой тренировки или аэробный бег (ЧСС 100-130 уд/мин) длительностью 5-10 мин, или ускорения по 3-5 секунд с интенсивностью, для начала 30%(3-5 раз), а затем 50-70%(5-10 раз). Включение в двигательную активность больших мышечных масс приводит к большим энергетическим затратам как на мышечное сокращение, так и на повышение температуры тканей и крови.

После разогрева необходимо направить кровь в большинство еще не открытых артериол. Для открытия их необходимо вызвать закисление основных мышечных групп. Стретчинг выполняется в виде повторных коротких по времени и амплитуде рывков с достижением к 10-30с предельного растяжения мышцы (группы мышц). Для достижения предельного растяжение можно использовать внешние предметы, силу тяжести тела, помощь партнера. После появления легкой болезненности растянутую мышцу следует активировать и удерживать в этом состоянии 10-30с. После интервала отдыха 30-60с следует вернутся к растяжению этой же мышцы. Серия из трех подходов может повторяться с интервалом: 3-5 мин. В разминке бегунов может быть использован следующий набор упражнений организованный в пары:





1. Серия. Растяжений мышц сгибателей тазобедренного сустава, сгибателей голеностопного сустава.

1.1. Выпад одной ногой вперед.

1.2. Выпад другой ногой вперед.

2. Серия. Растяжение мышц приводящих бедро.

2.1. Шаг в сторону.

2.2. Шаг в другую сторону.

3. Серия. Растяжение мышц спины задней поверхности бедра и приводящих мышц.

3.1. Сидя, одна нога прямая вперед, другая в сторону, согнута - "барьерный шаг", Выполняются покачивания, носок выпрямленной ноги тянут на себя руками.

3.2. Положение тоже, только производится смена положений ног.



После стретчинга в разминку следует включать суставную гимнастику.

Стретчинг в основной части тренировочного занятия. В основной части стретчинг используется для усиления эффекта скоростно-силовых и силовых упражнений. После выполнения прыжков, спринтерского бега или силовых упражнений психическое напряжение вызывает выход гормонов гипофиза а затем и других желез эндокринной системы. Гормоны стимулируют синтез органелл в мышечных волокнах, а для облегчения их прохождения через мембраны рекомендуется выполнять растяжение мышц - стретчинг. В этом случае выполняется стретчинг по возможности при полном расслаблении растягиваемых мышц.
Стретчинг может выполняться для увеличения подвижности в суставе - развития гибкости. В этом случае, как правило, используют внешние силы (например, вес партнера или тренера). Растяжение выполняется до предела, до боли и удерживается эта поза 1-5 мин. По ходу растяжения производятся кратковременные с небольшой амплитудой дополнительные воздействия на растягиваемую мышцу.

Вывод. Стретчинг одна из основных методик, решающих проблемы профилактики травматизма, поддержания гибкости и скоростно-силовой подготовленности.

вторник, 27 ноября 2012 г.

Строение мышечных волокон и механизм мышечных сокращений.
       Статическая сила, динамическая сила, статическая силовая выносливость, динамическая силовая выносливость… - физические качества, уровень развития которых определяет спортивный результат в подтягивании.

Миофибриллы, митохондрии, саркоплазматический ретикулум… - структурные элементы мышечной клетки, участвующие в преобразовании потенциальной химической энергии в полезную механическую работу или мышечное напряжение.

Креатинфосфатная реакция, гликолиз, аэробное окисление – механизмы энергообеспечения, которые служат делу обеспечения непрерывного ресинтеза АТФ в работающих мышцах.

Медленные окислительные, быстрые гликолитические, быстрые окислительно-гликолитические – типы мышечных волокон, отличающихся по скорости сокращения, активности ферментов ресинтеза АТФ, преимущественным механизмам энергопродукции.

Попробуем увязать между собой физические качества спортсмена, физиологию мышечного сокращения и биохимические процессы, происходящие в мышечных клетках. Для этого предварительно рассмотрим строение мышечного волокна и механизм мышечного сокращения в той степени, в которой это необходимо для подтягиваний.

01.1_ Строение и химический состав скелетных мышц
Скелетная мышца состоит из мышечных волокон (миоцитов). Мышечные волокна представляют собой гигантские многоядерные клетки длиной от 0,1 до 2-3 сантиметров, а в некоторых мышцах миоциты достигают 12 сантиметров. Площадь поперечного сечения мышечных клеток составляет от 3 до 10 квадратных микрометров.

Волокно покрыто эластичной оболочкой — сарколеммой и состоит из саркоплазмы, структурными элементами которой являются такие органоиды, как митохондрии, рибосомы, трубочки и пузырьки саркоплазматической сети (ретикулума) и так называемая Т-система а также различные включения. В саркоплазме условно выделяют две части – саркоплазматический матрикс и саркоплазматический ретикулум. Саркоплазматический ретикулум, представляющий собой определённым образом организованную сеть соединяющихся цистерн (содержащих в большой концентрации ионы кальция) и трубочек, играет важную роль в механизмах сокращения и расслабления мышцы. Кроме того, к части ретикулума прикреплены рибосомы, специальные сферические образования, на которых и при участии которых происходит биосинтез белков.


Саркоплазматическая сеть с помощью особых трубочек, называемых Т-системой, связана с оболочкой мышечной клетки. Т-система также имеет прямое отношение к мышечному сокращению, так как по ней передаётся изменение электрического потенциала поверхностной мембраны элементам ретикулума, что приводит к освобождению ионов кальция, поступающих к миофибриллам и запускающих процесс мышечного сокращения.

Рисунок 1. Строение Т-системы и саркоплазматического ретикулума мышечного волокна [по: Кроленко, 1975].

Саркоплазматический матрикс представляет собой коллоидный раствор, содержащий белки, гликоген, жировые капли и другие включения. Миофибриллы – сократительные элементы мышечных клеток – также находятся в саркоплазматическом матриксе.
Кроме того, в саркоплазме находятся ферменты гликолиза, расщепляющие гликоген или глюкозу до пировиноградной или молочной кислоты и креатинкиназа – фермент, ускоряющий креатинфосфатную реакцию. Особый белок саркоплазмы – миоглобин – обеспечивает некоторый запас кислорода в мышечной ткани, а также участвует в переносе кислорода от сарколеммы к митохондриям.
Мышечная клетка имеет не одно, а множество ядер, которые располагаются на её периферии – под сарколеммой. Внутри каждого ядра находится ДНК, являющаяся носителем носледственной информации и состоящая из генов, в которых закодирована структура всех синтезируемых мышечными волокнами белков.
Лизосомы, представляющие собой микроскопические пузырьки, содержат в растворённом виде различные ферменты, способные в условиях кислой реакции среды расщеплять различные высокомолекулярные вещества. Такая необходимость может возникать в мышечных клетках, например, при очень напряжённой мышечной деятельности.

01.2_Митохондрии
Митохондрии, одни из важнейших структурных компонентов мышечного волокна, располагаются цепочками вдоль миофибрилл (рисунок 1.), тесно соприкасаясь с мембранами ретикулума. В митохондриях протекает аэробное окисление углеводов, жиров и аминокислот, а за счёт энергии, выделяющейся при окислении, происходит ресинтез АТФ.

Митохондрии ограничены двумя мембранами (рисунок 2.). Наружная митохондриальная мембрана имеет ровные контуры, не образует выпячиваний или складок. Наружную мембрану от внутренней отделяет межмембранное пространство. Внутренняя мембрана ограничивает внутреннее содержимое митохондрии, ее матрикс. Характерной чертой внутренней мембраны митохондрий является их способность образовывать многочисленные выпячивания внутрь митохондрий. Такие выпячивания чаще всего имеют вид плоских гребней, или крист, существенно увеличивая поверхность внутренней мембраны. Мембраны митохондрий построены из белка и содержащих фосфорную кислоту жироподобных веществ - фосфолипидов. На внутренней мембране в определённом порядке расположены биологические катализаторы – ферменты, при помощи которых происходят окислительные процессы, а также компоненты дыхательной цепи – главной системы превращения энергии в митохондриях. На внешней мембране митохондрий в определённом порядке расположены ферменты, не имеющие отношения к дыхательной цепи. Немало ферментов в растворённом виде содержится и в матриксе. Кроме того, матрикс митохондрий содержит рибосомы и митохондриальную ДНК.
Рисунок  2. Схема строения митохондрии (по А.Кузнецов)


Великое множество миофибрилл, содержащихся в мышечных волокнах, требуют большого количества АТФ, которое должно быть доставлено к каждому саркомеру миофибрилл. На продольных ультратонких срезах скелетных мышц в электронном микроскопе видны многочисленные округлые мелкие сечения митохондрий, располагающихся в соседстве с саркомерами. Если же исследовать поперечные срезы мышечных волокон на уровне Z-дисков, то видно, что мышечные митохондрии представляют собой не мелкие шарики или палочки, а как бы паукообразные структуры, отростки которых могут ветвиться и простираться на большие расстояния, иногда через весь поперечник мышечного волокна.  При этом разветвления митохондрий окружают каждую миофибриллу в мышечном волокне, снабжая их АТФ, необходимой для мышечного сокращения. Следовательно, в плоскости z-диска митохондрии представлены типичным митохондриальным ретикулумом – единой митохондриальной системой. Такой пласт или этаж митохондриального ретикулума повторяется дважды на каждый саркомер, а все мышечное волокно имеет тысячи поперечно расположенных поэтажных пластов митохондриального ретикулума. Было обнаружено, что между этажами вдоль миофибрилл располагаются нитчатые митохондрии, соединяющие эти митохондриальные пласты. Тем самым создается трехмерная картина митохондриального ретикулума, проходящего через весь объем мышечного волокна.

 Предполагается, что с помощью специальных межмитохондриальных соединений или контактов может происходить функциональное объединение отдельных митохондрий и митохондриальных ретикуломов в единую энергетическую систему, позволяющую всем миофибриллам в мышечном волокне сокращаться синхронно по всей длине, поскольку механизм взаимодействия митохондрий посредством межмитохондриальных контактов может обеспечить синхронное поступление АТФ во все участки сокращающегося мышечного волокна.

Механизм кооперации и синхронизации работы митохондрий позволяет вести синтез АТФ в любой точке поверхности внутренней  мембраны таких разветвлённых митохондрии, обеспечивая энергией для сокращения те  участки  мышечного волокна, где в этом возникает необходимость. Но связывание отдельных митохондрий в единую цепь с помощью межмитохондриальных контактов наряду с очевидными преимуществами имеет и существенный недостаток. Дело в том, что при функциональном объединении митохондрий в единую митохондриальную систему любое существенное повреждение (пробой) её внутренней  мембраны приводит к  потере способности к ресинтезу АТФ сразу у всей объединённой группы митохондрий.

При проведении серии развивающих тренировок по подтягиванию направленных на развитие статической выносливости мышц-сгибателей кисти нередко используется метод выполнения нагрузки «до отказа». Если тренировки разделены недостаточным для восстановления интервалом отдыха, после проведения 4-5 развивающих тренировок подряд, в ходе которых может наблюдаться существенный прирост времени виса (т.е. увеличение аэробных возможностей мышц), неожиданно наступает срыв адаптации и возврат времени виса к первоначальному уровню.

Например, если спортсмен форсирует тренировочный процесс и выполняет  через день по 4-6 подходов до отказа, подняв за 2 недели вис с подтягиванием в темпе 1 раз в 8 секунд с 2 до 4 минут (такое возможно у квалифицированных спортсменов, например, после  длительного вынужденного перерыва в тренировках), то внезапно – без видимых причин - время виса может упасть до прежних двух минут и даже меньше.


Долгое время было непонятно, почему так происходит. В качестве одной из возможных причин называлась перегрузка нервной системы тренировками до отказа. Но срыв адаптации  обычно происходил на фоне эмоционального подъёма от быстрого прогресса тренировочных результатов и связанного с этим желания тренироваться всё больше и больше и имел мало общего с нервным срывом.

Возможно, что резкое падение результатов происходит из-за пробоя внутренней мембраны митохондриальной системы мышечного волокна, вследствие, например, чрезмерного закисления мышц на предшествующей  срыву адаптации тренировке. В этом случае повреждение небольшого по площади участка любой из митохондрий, входящих в митохондриальную сеть, должно приводить к отключению механизма аэробного окисления сразу во всей сети.

Тренировки с облегчением в 5-7% от веса тела позволяют резко (в 1,5 – 2 раза) увеличить объём тренировочной работы за счёт увеличения количества подтягиваний в подходе с соответствующим увеличением времени выполнения подхода. При этом энергопродукция смещается в сторону аэробного окисления, всё в большей степени активизируя работу митохондриальной системы. Серия развивающих тренировок с облегчением без должного интервала отдыха между ними также может привести к скачкообразному падению результатов, что также может быть объяснено повреждением внутренних мембран митохондрий продуктами метаболизма.

Можно ли каким-либо образом почувствовать приближение момента срыва адаптации и, снизив нагрузку, предотвратить это нежелательное явление?

Биологическое окисление, протекающее в митохондриях, состоит в окислении органических субстратов, например глюкозы, до углекислого газа и воды с выделением около 680 ккал (в расчёте на 1 моль, т.е. 180 г глюкозы), которая в дальнейшем идёт на создание макроэнергетической связи в молекуле  АТФ (фосфорилирование АДФ). Окисление и фосфорилирование – это два, в принципе, независимых процесса, которые для эффективного ресинтеза АТФ должны быть сопряжены. Сопряжение окисления и фосфорилирования происходит на внутренних мембранах митохондрий. Поэтому, когда мембраны повреждены, происходит разобщение этих процессов. Реакции окисления глюкозы продолжают идти, а ресинтез АТФ замедляется или прекращается. И сейчас даже неважно, что является причиной повреждения мембран – избыток молочной кислоты,  недостаток кислорода или повышенное его потребление, свободнорадикальное окисление или это происходит по каким-то иным причинам. Важно, что при повреждении мембран митохондрий в результате чрезмерного воздействия тренировочных нагрузок нарушается процесс ресинтеза АТФ, а энергия, выделяющаяся в процессе биологического окисления, теперь может превращаться только в тепло, приводя к локальному нагреву мышечной ткани.

Но одним из отдалённых признаком перетренированности является внезапная испарина, выступающая не только на лбу, но и на рабочих мышцах спортсмена в начале выполнения даже не очень напряжённой нагрузки. Возможно, таким образом организм реагирует на начинающийся процесс разобщения окисления и фосфорилирования, связанный с повреждением мембран митохондрий. Поэтому, если после серии развивающих нагрузок на очередной тренировке вы начинаете по непонятным причинам сильно потеть, стоит задуматься: а не перебрали ли вы с нагрузкой?
В любом случае безопасным (но в то же время обеспечивающим прогресс) считается вариант, когда тяжёлые развивающие тренировки проводятся не  чаще одного раза в 5 – 7 дней.

Экспериментальные данные говорят в пользу того, что увеличение числа митохондрий происходит путём роста и деления предшествующих митохондрий. Более того, митохондрии обладают собственным генетическим аппаратом, т.е. обладают полной  системой авторепродукции, хотя и  находящейся под генетическим контролем со стороны клеточного ядра.

Все митохондрии в теле человека наследуются от матери, а не от отца, поэтому способность к длительному выполнению упражнений передаётся по материнской линии.

По форме и размеру митохондрии напоминают бактерий; они содержат собственную ДНК и размножаются делением. Эти и другие факты привели к возникновению гипотезы о том, что много миллионов лет назад бактерии проникли в более высокоразвитые клетки и прочно обосновались в них, потеряв былую самостоятельность и со временем превратившись в клеточные органеллы, которые теперь называют митохондриями.

 

01.3_ Миофибриллы
Сократительные элементы – миофибриллы – занимают большую часть объёма мышечных клеток. Миофибриллы состоят из многочисленных параллельно расположенных нитей – филаментов. Перегородки, называемые Z – пластинками, разделяют их на отдельные участки, называемые саркомерами. Строение саркомера мышечного волокна показано на рисунке 3.

Мышечные нити – филаменты бывают двух типов: толстые и тонкие. Толстые имеют диаметр около 10 нм (1 нм = 10-9 м), а тонкие – около 5 нм. Толстые нити, состоящие из белка миозина, расположены в дисках А (рис. 7.3, 7.5), а тонкие, основным белком которых является актин, находятся в дисках I, частично заходя в диск А. Середину диска I пересекает Z – пластинка, соединяющая тонкие нити между собой и с сарколеммой. В поперечном сечении толстые и тонкие нити располагаются правильными шестиугольниками так, что каждая толстая нить окружена шестью тонкими, а каждая тонкая нить может вступать в контакт с тремя толстыми.

Рисунок 3.  Строение саркомера поперечнополосатого мышечного волокна: А — электронная микрофотография (малое увеличение), на которой четко видна структура саркомера; Б — схема саркомера; В — электронная микрофотография с высокой разрешающей способностью; Г — поперечное сечение саркомера на различных уровнях, видно положение толстых и тонких нитей в различных участках покоящегося саркомера (по Х. Хаксли)



Из-за особенностей своих оптических свойств миозиновые нити, находящиеся в середине саркомера, выглядят в световом микроскопе тёмной полосой, а актиновые нити – светлой. Именно в результате такого периодического чередования светлых и тёмных полос в бесчисленных саркомерах миофибриллы выглядят поперечно-полосатыми.


01.4_ Механизм мышечного сокращения.
В соответствии с теорией скользящих нитей мышца сокращается в результате укорочения множества последовательно соединенных саркомеров в миофибриллах, при этом тонкие актиновые нити скользят вдоль толстых миозиновых, двигаясь между ними к середине саркомера.
Миозиновые нити несут поперечные выступы с головками, состоящими примерно из 150 молекул миозина (рисунок 4.). Во время сокращения каждая головка (поперечный мостик) может связывать миозиновую нить с соседними актиновыми. Движение головок создаёт объединённое усилие, как бы «гребок», продвигающий актиновые нити в середину саркомера.
Рисунок 4. Функция поперечных мостиков.

А – модель механизма сокращения: миозиновая нить с поперечными мостиками, прикреплёнными к соседним актиновым нитям. Вверху – до, внизу – после «гребкового» движения. Б – модель механизма генерирования силы при статическом напряжении. Слева - до, справа – после «гребка» (по Й.Рюэгг).



В расслабленном состоянии механизм взаимодействия миозиновых головок с актиновыми нитями блокируется  за счёт того, что участок актиновых нитей, предназначенный для связывания с головками миозина, перекрыт молекулами белков тропонина и тропомиозина.

Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собой волну повышенной мембранной проницаемости, распространяющейся по нервному волокну. Эта волна передаётся на Т-систему саркоплазматической сети и в конечном итоге достигает цистерн, содержащих ионы кальция. Проницаемость стенок цистерн повышается, ионы кальция выходят из цистерн в саркоплазму, где их концентрация за очень короткое время (около 3 миллисекунд) увеличивается примерно в 1000 раз. Ионы кальция, взаимодействуя с тропонином, изменяют его пространственную форму, что вызывает смещение молекул тропомиозина, обеспечивая доступ миозиновых головок к активным участкам актиновых нитей. В результате этого между миозином и актином возникает поперечный мостик, расположенный под углом 90 градусов  (рисунок 4.). Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина, между мышечными нитями образуется довольно большое число поперечных мостиков. Образование связи между актином и миозином сопровождается повышением АТФазной активности миозина, разрешая её расщепление. За счёт энергии, выделяющейся при гидролизе АТФ, миозиновая головка подобно веслу лодки поворачивается и мостик между толстыми и тонкими нитями оказывается под углом 45 градусов, что приводит к скольжению мышечных нитей навстречу друг другу (рисунок 4.)

Совершив поворот, мостики между тонкими и толстыми нитями разрываются, АТФазная активность миозина резко снижается и гидролиз АТФ прекращается. Но если двигательный нервный импульс продолжает поступать в мышцу и в саркоплазме сохраняется высокая концентрация ионов кальция, поперечные мостики образуются снова, повторно включается  гидролиз АТФ, дающий энергию для поворота поперечных мостиков с последующим их разрывом. За счёт ритмичных прикреплений и отделений миозиновых головок актиновая нить подтягивается к середине саркомера подобно тому, как группа людей тянет верёвку, перебирая её руками. Когда принцип «вытягивания верёвки» реализуется во множестве последовательно расположенных саркомеров, повторяющиеся молекулярные движения поперечных мостиков приводят к  движению всей мышцы.

Каждый цикл сокращения, включающий образование, поворот и разрыв мостика, требует расходования одной молекулы АТФ в качестве источника энергии.

При сокращении мышцы происходит её укорочение. Но при статической нагрузке длина мышцы не изменяется. Что же в таком случае происходит в мышце с точки зрения  «гребковой» теории Хаксли?

Благодаря упругости поперечных мостиков саркомер может развивать силу даже без скольжения нитей относительно друг друга. Процесс генерирования изометрической (т.е. статической) силы показан на рисунке 4Б. Сначала головка миозиновой молекулы прикрепляется к актиновой нити под прямым углом. Затем она наклоняется под углом 45 градусов, возможно благодаря притяжению между соседними точками прикрепления на ней и на актиновой нити. При этом головка действует как миниатюрный рычаг, приводя внутреннюю упругую структуру поперечного мостика в напряжённое состояние. Упругое напряжение, создаваемое индивидуальным поперечным мостиком очень мало и для создания необходимой мышечной силы требуется объединение усилий огромного количества таких соединённых параллельно мостиков. Они будут тянуть соседние актиновые нити, как команда игроков тянет канат. Но даже при изометрическом сокращении поперечные мостики не находятся в непрерывно напряжённом состоянии. Каждая  миозиновая головка уже через десятые или даже сотые доли секунды отделяется от актиновой нити, прикрепляясь к ней снова через такое же короткое время. Однако несмотря на чередование прикреплений и отделений, следующих  с частотой от 5 до 50 раз в секунду, сила, развиваемая мышцей, остаётся неизменной, так как статистически в каждый момент времени в прикреплённом состоянии находится одно и то же количество мостиков.

Расслабление мышцы происходит после прекращения поступления двигательного импульса. При этом ионы кальция переходят обратно в цистерны саркоплазматического ретикулума. Уборка ионов кальция происходит в сторону с более высокой концентрацией этих ионов, поэтому этот процесс требует дополнительных затрат энергии. Процесс уборки ионов кальция  называют кальциевым насосом и производится он за счёт энергии, получаемой при расщеплении АТФ, причём на уборку каждого иона кальция затрачивается две молекулы АТФ. Снижение концентрации кальция в саркоплазме вызывает изменение пространственной ориентации тропонина, что в конечном итоге приводит к невозможности образования поперечных мостиков между толстыми и тонкими нитями. За счёт упругих сил, возникших ранее (при мышечном сокращении) в коллагеновых нитях, окружающих мышечное волокно, мышца  расслабляется и возвращается в исходное положение,  чему также может способствовать и сокращение мышц-антогонистов.

01.5_Изменение величины силы в фазе подъёма

Количество поперечных мостиков, связывающих актиновые и миозиновые нити, а, следовательно, и развиваемая мышечная сила согласно теории скользящих нитей, зависит от степени перекрытия толстых и тонких нитей, а значит, и от длины саркомера или мышцы. Максимум развиваемой изолированной мышцей силы будет наблюдаться при длине, примерно соответствующей состоянию покоя. При уменьшении длины сила уменьшается из-за того, что актиновые и миозиновые нити начинают мешать друг другу, а при растяжении мышцы до большей, чем в покое, длины сила уменьшается из-за того, что нити актина оказываются вытянутыми из миозиновых пучков. При этом только часть головок миозина может присоединиться к актину.

В реальных условиях мышцы, прикрепляющиеся к костям, вызывают движение рабочих звеньев тела. С движением рабочего звена меняется угол в суставе и, следовательно, длина обслуживающих данное сочленение мышц и угол подхода их к месту прикрепления на кости. При этом увеличиваются или уменьшаются плечо и момент силы мышц, что, в свою очередь, изменяет механические условия их работы. Эти условия могут быть выгодными, когда силовой потенциал используется полностью, и невыгодными, когда максимальное напряжение мышц используется только частично.

Сила, проявляемая в наименее целесообразной с механической точки зрения фазе движения, часто составляет не более 50-60% (рисунок 5.) от силы в наиболее целесообразной его фазе.

Рисунок 5.

А-динамика максимальной силы при сгибании руки в локтевом суставе (по Платонову В.Н.).

Б-рисунок, иллюстрирующий сгибание руки в локтевом суставе.

1–плечевая кость;

2-двуглавая мышца плеча;

3-плечевая мышца;

4-плечелучевая мышца;

5–лучевая кость;

6–локтевая кость;

8-трёхглавая мышца плеча (разгибатель локтевого сустава)



При подтягивании на перекладине наименее благоприятным является верхний участок траектории движения в фазе подъёма, который недостаточно подготовленные спортсмены проходят с большим трудом, особенно в конечной части выполнения упражнения.

В начале подтягиваний, когда силовые способности спортсмена находятся на должном уровне, он может проходить проблемный участок по инерции – за счёт набранной ранее скорости. По мере накопления усталости силовые способности спортсмена снижаются настолько, что он уже не может набрать необходимую скорость. Поэтому в случае недостаточного уровня развития силы спортсмен «зависает» на верхнем участке траектории движения, затрачивая на его прохождение неоправданно большое количество энергии.

На рисунке 6. приведены графики зависимости резерва силовых способностей от высоты подъёма для 6 человек – 5 спортсменов (КМС и МС по полиатлону) и одного человека, не занимающегося спортом. Резервом силы в данном случае считается сила, которую способен развить испытуемый в какой-либо точке траектории движения сверх веса своего тела. Поскольку рост (а значит, и высота подъёма) и вес тела спортсменов различен, их силовые способности следует выражать в относительных единицах. Так, высота подъёма из исходного положения до уровня грифа принята за 100%, а резерв силы выражен в долях веса тела каждого из участников эксперимента.

В нижней части траектории движения (от 0 до 30 %) характер изменения резерва силы может быть различным, но, начиная примерно с 30% от высоты подъёма, резерв силы непрерывно снижается, что является экспериментальным подтверждением тезиса о проблемности верхнего участка траектории.
Рисунок 6. Изменение относительного резерва силы в фазе подъёма.



Взаимосвязь относительного резерва силы и результата в подтягивании имеет сложный характер. С одной стороны, испытуемый, не занимающийся подтягиванием (кривая 1), имеет более низкие показатели резерва силы в верхней части траектории движения  по сравнению с квалифицированными полиатлонистами. Но с другой стороны, спортсмены, имеющие различные результаты в подтягивании (от 38 до 54 раз – кривые 3-6), показали в эксперименте практически равные значения относительного резерва силы на верхнем участке траектории движения. В то же время у спортсменов, имеющих практически равные результаты в подтягивании (54 и 55 раз – кривые 6 и 2), наблюдаются существенно отличающиеся показатели резерва силы на уровне грифа – соответственно 35% и 56% от веса тела. Это можно объяснить тем, что при достижении определённого уровня квалификации в подтягивании (предположительно 35-40 раз) первостепенное значение имеет не столько величина резерва силы, которая зависит от анаэробных возможностей мышц спортсмена, сколько скорость его расходования при выполнении подтягиваний, которая в большей степени определяется аэробными возможностями мышц.

Так, для спортсмена 2, резерв силы которого на уровне грифа перекладины составляет 56% от веса тела, средняя скорость расходования этого резерва будет составлять  56/55=1,02 % от веса тела  в расчёте на одно подтягивание. Для спортсмена 6, резерв силы которого в той же точке составляет  35% от веса тела,  скорость его снижения будет равна 35/54=0,65% от веса тела в расчёте на одно подтягивание. Следовательно, спортсмен 6, обладающий существенно меньшим резервом силы, выполняет подтягивания более экономично.

Мы рассматривали соотношение между силой и скоростью мышечного сокращения (кривая Хилла), отметив, что скорость сокращения мышцы нелинейно снижается с увеличением нагрузки. Ненагруженная мышца сокращается с максимальной скоростью, но эта скорость зависит от типа мышечных волокон.  Чем быстрее (при участии АТФ) происходит циклическое взаимодействие миозиновых мостиков с актином, тем выше скорость скольжения. АТФазная активность миозина в быстрых мышечных волокнах выше, чем в медленных, поэтому поперечные мостики волокон типа IIА и IIВ будут быстрее расщеплять АТФ  и взаимодействовать с актином.

В условиях противодействия нагрузке максимальная скорость сокращения мышцы будет тем ниже, чем выше нагрузка. В случае если нагрузка не превышает предельные возможности спортсмена, он может произвольно менять скорость мышечного сокращения (например, скорость в фазе подъёма туловища). Так, когда все мышечные волокна участвуют в поднимании груза, относительная нагрузка на каждое мышечное волокно меньше (а скорость их сокращения больше), чем в том случае, когда активна лишь часть волокон. Таким образом, можно увеличить скорость укорочения мышцы при одной и той же нагрузке за счёт вовлечения дополнительных двигательных единиц.

Теоретически увеличение максимальной произвольной силы спортсмена должно приводить к улучшению результата в подтягивании за счёт относительного снижения нагрузки на мышцы и возможности подключения дополнительных двигательных единиц в ходе выполнения подтягиваний. Но на практике это часто происходит только в том случае, если длительность подтягиваний не превышает 1-2 минуты. И связано это с тем, что увеличение максимальной силы требует проведения соответствующих тренировок с большими отягощениями, которые направлены на увеличение количества миофибрилл и  повышение концентрации креатинфосфата в быстрых мышечных волокнах. Но тренировки, состоящие из подходов с большими отягощениями, отрицательно сказываются на длительности виса. Получается замкнутый круг – увеличение одной способности происходит за счёт снижения другой, разорвать который можно только за счёт разумного сочетания тренировок, направленных на увеличение количества  миофибрилл и тренировок, направленных на повышение числа митохондрий в рабочих мышцах спортсмена.